Tag: Physics

Electrical Measurement Techniques For the Physics Laboratory


Free Download Electrical Measurement Techniques: For the Physics Laboratory
English | 2024 | ISBN: 9819981867 | 611 Pages | PDF EPUB (True) | 66 MB
This book highlights the electrical engineering aspects of a typical physics laboratory. To perform a sound experiment in a physics laboratory, it is paramount that readers understand the equipment and methods used to collect the data. This includes sensors (e.g., thermocouples and vacuum gauges), amplifiers (e.g., instrumentation amplifiers and lock-in amplifiers), oscilloscopes and probes (active probes and current probes), transmission cables (50-ohm termination) and noise shielding (grounding), spectrum analyzers (FFT and heterodyne technique), ADCs and digital signal processing, convolution and correlation, data analysis such as curve fitting, and uncertainty calculations (uncertainty ‘budgets’). The readers need to know about electromagnetic crosstalk, time-to-digital converters, student-t distributions, PID controllers, spectral leakage, and windows. This book helps readers understand all of that.

(more…)

A First Guide to Computational Modelling in Physics


Free Download A First Guide to Computational Modelling in Physics
English | 2024 | ISBN: 1009413120 | 131 Pages | PDF | 116 MB
This innovative text helps demystify numerical modelling for early-stage physics and engineering students. It takes a hands-on, project-based approach, with each chapter focusing on an intriguing physics problem taken from classical mechanics, electrodynamics, thermodynamics, astrophysics, and quantum mechanics. To solve these problems, students must apply different numerical methods for themselves, building up their knowledge and practical skills organically. Each project includes a discussion of the fundamentals, the mathematical formulation of the problem, an introduction to the numerical methods and algorithms, and exercises, with solutions available to instructors. The methods presented focus primarily on differential equations, both ordinary and partial, as well as basic mathematical operations. Developed over many years of teaching a computational modelling course, this stand-alone book equips students with an essential numerical modelling toolkit for today’s data-driven landscape, and gives them new ways to explore science and engineering.

(more…)

Stochastic Analysis and Mathematical Physics


Free Download Stochastic Analysis and Mathematical Physics: ANESTOC ’98 Proceedings of the Third International Workshop by Rolando Rebolledo
English | PDF | 2000 | 168 Pages | ISBN : 0817641858 | 11.1 MB
The seminar on Stochastic Analysis and Mathematical Physics started in 1984 at the Catholic University of Chile in Santiago and has been an on going research activity. Since 1995, the group has organized international workshops as a way of promoting a broader dialogue among experts in the areas of classical and quantum stochastic analysis, mathematical physics and physics. This volume, consisting primarily of contributions to the Third Inter national Workshop on Stochastic Analysis and Mathematical Physics (in Spanish ANESTOC), held in Santiago, Chile, in October 1998, focuses on an analysis of quantum dynamics and related problems in probability the ory. Various articles investigate quantum dynamical semigroups and new results on q-deformed oscillator algebras, while others examine the appli cation of classical stochastic processes in quantum modeling. As in previous workshops, the topic of quantum flows and semigroups occupied an important place. In her paper, R. Carbone uses a spectral type analysis to obtain exponential rates of convergence towards the equilibrium of a quantum dynamical semigroup in the £2 sense. The method is illus trated with a quantum extension of a classical birth and death process. Quantum extensions of classical Markov processes lead to subtle problems of domains. This is in particular illustrated by F. Fagnola, who presents a pathological example of a semigroup for which the largest * -subalgebra (of the von Neumann algebra of bounded linear operators of £2 (lR+, IC)), con tained in the domain of its infinitesimal generator, is not a-weakly dense.

(more…)

Stochastic Analysis and Mathematical Physics II 4th International ANESTOC Workshop in Santiago, Chile


Free Download Stochastic Analysis and Mathematical Physics II: 4th International ANESTOC Workshop in Santiago, Chile by Rolando Rebolledo
English | PDF | 2003 | 172 Pages | ISBN : 3764369973 | 12.7 MB
The seminar on Stochastic Analysis and Mathematical Physics of the Ca tholic University of Chile, started in Santiago in 1984, has being followed and enlarged since 1995 by a series of international workshops aimed at pro moting a wide-spectrum dialogue between experts on the fields of classical and quantum stochastic analysis, mathematical physics, and physics. This volume collects most of the contributions to the Fourth Interna tional Workshop on Stochastic Analysis and Mathematical Physics (whose Spanish abbreviation is "ANESTOC"; in English, "STAMP"), held in San tiago, Chile, from January 5 to 11, 2000. The workshop style stimulated a vivid exchange of ideas which finally led to a number of written con tributions which I am glad to introduce here. However, we are currently submitted to a sort of invasion of proceedings books, and we do not want to increase our own shelves with a new one of the like. On the other hand, the editors of conference proceedings have to use different exhausting and com pulsive strategies to persuade authors to write and provide texts in time, a task which terrifies us. As a result, this volume is aimed at smoothly start ing a new kind of publication. What we would like to have is a collection of books organized like our seminar.

(more…)

Basics of Statistical Physics (Third Edition)


Free Download Basics of Statistical Physics (Third Edition) by Harald J W Muller-Kirsten
English | April 12, 2022 | ISBN: 9811256098 | 254 pages | MOBI | 8.57 Mb
Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles and attempts to explain these in simple terms, supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Einstein condensation. In this latest edition, apart from a general revision, the topic of thermal radiation has been expanded with a new section on black bodies and an additional chapter on black holes. Other additions are more examples with applications of statistical mechanics in solid state physics and superconductivity. Throughout the presentation, the introduction carries almost all details for calculations.

(more…)

Cybernetical Physics From Control of Chaos to Quantum Control (2024)


Free Download Cybernetical Physics: From Control of Chaos to Quantum Control by Alexander L. Fradkov
English | PDF | 2007 | 248 Pages | ISBN : 3540462759 | 3.3 MB
Cybernetical physics borrows methods from both theoretical physics and control engineering. It deals with the control of complex systems is one of the most important aspects in dealing with systems exhibiting nonlinear behavior or similar features that defy traditional control techniques. This book fully details this new discipline.

(more…)

Basic Concepts in Computational Physics, Second Edition


Free Download Basic Concepts in Computational Physics, Second Edition by Benjamin A. Stickler , Ewald Schachinger
English | PDF (True) | 2016 | 412 Pages | ISBN : 3319272632 | 9.1 MB
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes.

(more…)

Microlocal Methods in Mathematical Physics and Global Analysis (2024)


Free Download Microlocal Methods in Mathematical Physics and Global Analysis by Daniel Grieser, Stefan Teufel, Andras Vasy
English | PDF (True) | 2013 | 147 Pages | ISBN : 3034804652 | 1.5 MB
Microlocal analysis is a field of mathematics that was invented in the mid-20th century for the detailed investigation of problems from partial differential equations, which incorporated and made rigorous many ideas that originated in physics. Since then it has grown to a powerful machine which is used in global analysis, spectral theory, mathematical physics and other fields, and its further development is a lively area of current mathematical research. In this book extended abstracts of the conference ‘Microlocal Methods in Mathematical Physics and Global Analysis’, which was held at the University of Tübingen from the 14th to the 18th of June 2011, are collected.​

(more…)

Looking at Time from a Physics Perspective


Free Download Looking at Time from a Physics Perspective
English | 2024 | ISBN: 177491462X | 396 Pages | PDF (True) | 14 MB
The subject of time continues to be a subject of extensive research in the development of new theories of physics. This new volume is addressed to students who are starting a graduate program in physics or electrical engineering interested in complementing their studies of relativity theory and quantum physics, applying the knowledge they have acquired about these themes to the analysis of situations where the issue of time measurement is relevant. This is the case, for example, of clock synchronization, transit times of optical signals through dielectric and absorbing media, lifetimes of excited atomic states, among others. These topics, in addition to being of great importance to theoretical physicists, are the basis of many technological developments. For example, global positional systems (GPS) are based on the predictions of relativity theory about time and the effect of gravity over time measurement.

(more…)

Introduction to Statistical Physics


Free Download Introduction to Statistical Physics By Kerson Huang
2001 | 288 Pages | ISBN: 0748409424 | DJVU | 3 MB
Statistical physics is a core component of most undergraduate (and some post-graduate) physics degree courses. It is primarily concerned with the behavior of matter in bulk-from boiling water to the superconductivity of metals. Ultimately, it seeks to uncover the laws governing random processes, such as the snow on your TV screen. This essential new textbook guides the reader quickly and critically through a statistical view of the physical world, including a wide range of physical applications to illustrate the methodology. It moves from basic examples to more advanced topics, such as broken symmetry and the Bose-Einstein equation. To accompany the text, the author, a renowned expert in the field, has written a Solutions Manual/Instructor’s Guide, available free of charge to lecturers who adopt this book for their courses. Introduction to Statistical Physics will appeal to students and researchers in physics, applied mathematics and statistics.

(more…)